

Mechanical stimulations by vibration or sound may promote pollination in high-value crop varieties. The development of robotic pollinators tailored to the specific frequencies of Australian crops, can generate significant cost savings for the Australian indoor cropping industry.

Competitive advantage

- Ability to identify frequency-specific stimulations that promote pollination in high-value crop varieties
- Skills and experience to characterise the effects of frequency and modes of sonic vibration on flowering and reproduction, fruit development and nutritional quality
- State-of-the-art sound and vibration generation and measurement equipment, such as scanning laser vibrometers, electromechanical shakers, acoustic cameras, sound level meters, multi-channel signal analysers, sensors and accelerometers
- Expertise in Finite Element Analyses of vibration, acoustics and dynamics
- Expertise in signal processing techniques and programming to develop inhouse custom processing tools best suited for the analysis experimental and numerical data

More Information

Prof Chun Wang

School of Mechanical and Manufacturing Engineering

T: +61 (0)2 9385 3232 E: chun.h.wang@unsw.edu.au

UNSW Knowledge Exchange knowledge.exchange@unsw.edu.au www.capabilities.unsw.edu.au +61(2) 9385 5008

Impact

• Automated pollination could save \$60,000/year per acre of protected cropping

Successful applications

- Signature management of maritime platforms
- · Optimisation of mufflers for improved acoustic performance
- Diagnostics of helicopter gearboxes and gas turbine engines
- Modelling of faults in IC engines, geared systems and rolling element bearings
- · Machine condition monitoring

Capabilities and facilities

- Vibration and acoustic wave generation, including electromagnetic shaker, speakers and transducers, and associated electronic hardware, including signal function generator, amplifiers and a dedicated instrument control software. This allows any type of excitation (or stimuli) to a structure to be applied
- Vibration and acoustic wave measurement, using state-of-the-art scanning laser vibrometer (Polytec PSV-500), accelerometers, microphones, and acoustic camera
- Computer-based modal analysis and computational modelling capability
- Comprehensive capability in generation, characterisation, and modelling of the vibration responses of plants and

biostructures

Our partners

• CRC-Future Food Systems