

Thermomechanical quench-polish-quench (QPQ) surface modification—using waste, rather than the traditional cyanide-based environment—on different types of steel, to increase resistance to corrosion and abrasion.

Competitive advantage

- Surface modification can be customised and is environmentally friendly
- This new surface modification technology outperformed any other traditional nitriding or plating of steel and will increase both its corrosion and abrasion resistance
- An innovative and effective way to produce steel components with enhanced properties at low cost

Impact

 This innovative and economical new approach marries industry demands for more cost-effective, durable steel products with global imperatives to address resource depletion and environmental degradation, through the recovery of resources from waste.

Successful applications

 Formation of ultrahard surface on normal carbon steel increasing its compression strength by 30 percent and its hardness by 40 percent

Capabilities and facilities

- The Centre for Sustainable Materials Research and Technology ("SMaRT") is an internationally recognised pioneer in the transformation of complex waste into value-added resources, such as turning waste glass or textiles into high performance building applications, or using waste rubber tyres to produce Green Steel
- Purpose-built state-of-the-art laboratories
- Specialist furnaces

More Information

Laureate Scientia Professor Veena Sahajwalla

School of Materials Science and Engineering

T: +61 2 9385 6432 E: veena@unsw.edu.au

Dr Farshid Pahlevani

School of Materials Science and Engineering

T: +61 2 9385 4433 E: f.pahlevani@unsw.edu.au

UNSW Knowledge Exchange knowledge.exchange@unsw.edu.au

www.capabilities.unsw.edu.au

+61(2)93855008